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Abstract. Quantification is the supervised learning task of predicting
the prevalence values of classes in a data sample. Physics literature knows
the same task under a di!erent name: unfolding. However, the literature
on quantification and the literature on unfolding are largely disconnected
from each other, likely due to an interdisciplinary gap. We bridge this
gap by proposing a common framework that integrates algorithms from
both fields in a unified form. Instantiations of our framework di!er from
each other in terms of the loss functions, the regularizers, and the feature
transformations they employ.

Keywords: Quantification · Unfolding · Classification · Experimental
physics · Machine learning.

1 Introduction

Many applications of supervised learning require a prediction of the distribution
of the target quantity, as exhibited by some data sample. In these applications,
predictions for individual data instances are only secondary; they are issued as
a means from which the distribution can be reconstructed. Examples of such
applications are text sentiment analyses [11], technical support log analyses [10],
social sciences [15], the reconstruction of energy spectra in astroparticle physics
[6], and several other areas.

Supervised learning for the prediction of target distributions is known as
quantification learning [10,12]. Within experimental physics, however, the same
problem is called unfolding [2,14,7] or deconvolution [6]. As of today, the lit-
erature from quantification research and the literature from unfolding research
are largely disconnected from each other, despite their substantial similarities in
terms of their problem statements and their solutions.

Contributions We propose a common framework for algorithms that stem from
quantification literature and from unfolding literature. This framework reveals
several similarities between existing methods from the two research fields. More-
over, it paves the way for strengthening interdisciplinary e!orts on the subject.
Our presentation completes a similar unification attempt by Firat [9] in terms
ω This paper is a slightly modified resubmission of a recent publication by us [5]
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of i) taking unfolding algorithms into consideration and ii) giving formal proofs
about the correctness of our framework. Our reusable implementation of all
methods is available online.1

Sec. 2 details unfolding algorithms within our unifying framework. In Sec. 3,
we integrate algorithms from quantification literature. We summarize our find-
ings in Tab. 1 before Sec. 4 concludes.

2 Unfolding

A frequent objective in experimental physics is to estimate the spectrum of a
physical quantity that cannot be measured directly. In this case, the spectrum
needs to be reconstructed from correlated quantities which are measured instead.

To this end, assume that we can measure the distribution q(ωx) = P(X = ωx)
of some quantity X within a sample. Moreover, let the measurement process
be characterized through the conditional probabilities M(ωx | yc) = P(X = ωx |
Yc = y) of measuring some ωx → X when the relevant quantity has the (possibly
continuous) value y → Yc. The objective of any unfolding algorithm is then to
reconstruct the relevant distribution p(y) = P(Yc = y) from the distributions q
and M , according to the integral

q(ωx) =

∫

Yc

M(ωx | y) · p(y) dy. (1)

The estimation of p(y) from data is enabled through the discretization of
Eq. 1. In case of a continuous target interval Yc = [a, b), we first need to map
each continuous label to a discrete class index Y = {1, . . . , C}. For instance, the
estimation of an energy spectrum requires a binning of the interval Yc into C
bins [3,7]. We proceed similarly with the feature space X ↑ Rd, in mapping it to
a discrete feature representation f(ωx) → {1, . . . , F}, which is still to be defined
for each unfolding algorithm in particular.

The discretization of y and ωx gives rise to a straightforward representation
of distributions in terms of histograms. Consider a data sample D = {(ωxi, yi) →
X ↓ Y : 1 ↔ i ↔ N} in which the classes yi are not observed. Estimating the
quantities from Eq. 1 in terms of histograms

ωp =
1

N

N∑

i=1

εyi , ωq =
1

N

N∑

i=1

εf(ωxi), [εj ]k =

{
1 if j = k,

0 otherwise
(2)

leads to the system of linear equations

ωq = M · ωp, (3)

where the transfer matrix M → RC→F is estimated by counting and normalizing
the co-occurrences of labels y and transformed features f(ωx) in a training set.
Advanced algorithms are required to estimate ωp because a direct solution M↑1ωq
is not guaranteed to exist.
1 https://github.com/mirkobunse/QUnfold.jl

https://github.com/mirkobunse/QUnfold.jl
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A Common Framework for Unfolding and Quantification Unfolding algorithms
solve Eq. 3 for ωp, a histogram estimate of the (continuous) distribution p(y) from
Eq. 1. However, M is not invertible in general. A general regularized solution for
the unfolding / quantification problem, with a regularization strength ε → 0, is

ωp →
= argmin

ωp↑0 s.t. 1→ωp=1
L(ωp ; ωq,M) + ε · r(ωp), (4)

where the loss function L : RC ↑ R and the regularization function r : RC ↑ R
are still to be defined for each particular unfolding / quantification method. The
constraints in Eq. 4 ensure that ωp → represents a valid probability density. Our
framework extends the one by Firat [9] with regularization functions r(ωp).

Adhering to this framework are the most important unfolding algorithms,
namely

Regularized Unfolding (RUN) [3,2] RUN models the likelihood of solutions
in terms of Poisson-distributed counts. Namely, we observe a histogram of
counts q̄ = N · ωq ↓ NF , each element of which is modelled as being Poisson-
distributed with the rate ϑi = [Mp̄]i. This modelling gives rise to the negative
log-likelihood function

LRUN
(ωp ; ωq,M) =

F∑

i=1

[Mp̄]i ↔ q̄i ln[Mp̄]i, (5)

which RUN minimizes.
To ensure smooth solutions, RUN employs Tikhonov regularization. The
Tikhonov matrix T ↓ RC↓C is defined such that

rRUN
(ωp) =

1

2
(Tωp )2 =

1

2

C↔1∑

i=2

([ωp]i↔1 ↔ 2[ωp]i + [ωp]i+1)
2 . (6)

Unfolding via Singular Value Decomposition (SVD) [14] This method
employs the regularizer from Eq. 6 with a least squares loss

LSVD
(ωp ; ωq,M) =

∥∥∥∥
ωq ↔Mωp

ωw

∥∥∥∥
2

2

, (7)

which is weighted by a vector ωw ↓ RF . For instance, a Poisson model can be
realized through Poisson variances ωw =

↗
q̄.

Iterative Bayesian Unfolding (IBU) [8,7] IBU revolves around an expec-
tation maximization approach. Starting from a prior ωp (0), it repeatedly up-
dates the estimate ωp (k) according to Bayes’ theorem

[ωp (k)
]i =

F∑

j=1

[M ]ij [ωp (k↔1)
]i∑C

i↑=1[M ]i↑j [ωp (k↔1)]i↑
[ωq]j . (8)



4 M. Bunse, K. Morik

IBU implements regularization in two ways. First, through early stopping
in combination with a smooth prior. For instance, starting from ωp (0)

=
1
C

and stopping before Eq. 8 converges will maintain the smoothness of ωp (0) to
some degree. Second, the intermediate estimates ωp (k) are smoothed with a
low-order polynomial.

The above algorithms do not specify the feature transformation f(ωx) →
{1, . . . , F} through which ωq and M are defined; they solely focus on the esti-
mation of ωp from any given ωq and M . In this sense, these algorithms are open to
any feature transformation. Physicists have proposed

– to bin a single feature that is well correlated with the target quantity [2],
– to cluster the features in order to map instances to cluster indices [6],
– or to optimally partition the feature space by means of decision trees [4]

in order to obtain histograms ωq which represent the data sample.

3 Quantification

In the following, we show that several algorithms from quantification literature
are indeed instances of the unified framework we have presented above. A sum-
mary of these findings is displayed in Tab. 1. We prove the correctness of our
unifying notation in the Appendix.

Table 1. Algorithms for unfolding and quantification within the framework of Eq. 4.

loss function L regularizer r feature transformation f

RUN [3,2]
∑d

i=1[Mp̄]i → q̄i ln[Mp̄]i 1
2 (Tωp )2 not specified / any

SVD [14]
∥∥∥ ωq→Mωp

ωw

∥∥∥
2

2

1
2 (Tωp )2 not specified / any

IBU [8,7] expectation maximization smoothing not specified / any

ACC [10,15] ↑ωq →Mωp ↑22 none εargmaxi[h(ωx)]i

PACC [1] ↑ωq →Mωp ↑22 none h(ωx)

ReadMe [15] ↑ωq →Mωp ↑22 none εωx=(X1,...,X2d
)

HDx [13] 1
d

∑d
i=1 HDi(ωq, Mωp) none (εb(ωx;1), . . . , εb(ωx;d))

HDy [13] 1
d

∑d
i=1 HDi(ωq, Mωp) none (εb(h(ωx);1), . . . , εb(h(ωx);C))

CC [10] none (assume M = I) none εargmaxi[h(ωx)]i

PCC [1] none (assume M = I) none h(ωx)
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Namely, our framework from Eq. 4 accommodates the following algorithms:

Adjusted Classify and Count (ACC) [10,15] Hopkins and King [15] pre-
sent a method that extends the binary adjustment by Forman [10] to multi-
class settings. Their extension represents a data sample as the counts of
classification outcomes argmaxi[h(ωx)]i, as returned by a multi-class classifier
h : X → RC . In this case, M is simply the normalized confusion matrix of
h, as estimated on held-out training data. Hopkins and King [15] propose to
solve Eq. 3 via constrained least squares regression, hence

LACC
(ωp ; ωq,M) = ↑ωq ↓Mωp ↑22 (9)

and no regularization is employed.
Others [17,16] have proposed to solve Eq. (3) through matrix inversion,

ωp inv
= M→1ωq.

However, there is no guarantee that M is indeed invertible. Therefore, ωp inv

might be undefined and the method by Hopkins and King [15] should be the
prefered multi-class version of ACC.

Probabilistic ACC (PACC) [1] This method employs the same adjustment
as ACC, hence the same loss. However, PACC averages soft classifications
h(ωx) ↔ RC instead of counting the crisp outcomes argmaxi[h(ωx)]i.

ReadMe [15] Building on the multi-class version of ACC, ReadMe employs
the loss function from Eq. 9. However, ReadMe transforms the features in
a unique way that is motivated in text mining. In this application area,
instances ωx are often represented as bags of words, i.e. by sparse indicator
vectors {0, 1}d for a vocabulary of size d. In ReadMe, ωq is a histogram over
all 2d possible incarnations Xi of these indicator vectors, i.e.

fReadMe
(ωx) = εωx=(X1,...,X2d )

,

where [εa=(a1,...,an)]i =

{
1 if a = ai,

0 otherwise
.

(10)

Since such a representation is only feasible with small d, ReadMe produces
multiple estimates, each of which employs a di!erent and small random
selection of words. Finally, all of these estimates are averaged.

HDx [13] In this method, each feature is separately binned and a data sample
is represented as a concatenation of all feature-wise histograms

f(ωx) = (εb(ωx;1), . . . , εb(ωx;d)), (11)

where b(ωx; i) is a binning function which maps the feature value [ωx]i to the
corresponding bin index {1, . . . , Bi}.
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The loss is measured as the average of feature-wise Hellinger distances,

L(ωp ; M, ωq) =
1

d

d∑

i=1

HDi(ωq, Mωp), (12)

where HDi(ωq, Mωp) =

√√√√√

∑i
k=1 Bk∑

j=1+
∑i→1

k=1 Bk

(√
[ωq]j →

√
[Mωp]j

)2

. (13)

HDy [13] Originally, HDy has been proposed for binary quantification only.
However, we can easily extend the method to the multi-class setting. In this
setting, HDy replaces the separated binning of features b(ωx, i) in HDx with a
separated binning of class-wise classifier outputs b(h(ωx), i). All other aspects
of HDx are maintained.

(Probabilistic) Classify and Count (PCC/CC) [10,1] We also conceive these
non-adjusted methods, which simply return ωq as their estimates for ωp, as in-
stances of our framework. Strictly speaking, CC and PCC do not require the
minimization of a loss function. More loosely speaking, however, their dis-
regard of M can be understood as the assumption of a perfect classifier, so
that M = I is the identity matrix. Under this assumption, the least squares
loss from Eq. 9 leads to the estimate ωpCC

= ωq and we can understand this
estimate as an instance of Eq. 4.

Regarding f(ωx), CC employs the feature transformation of ACC and
PCC employs the feature transformation of PACC.

4 Conclusion and Outlook

We have presented the unfolding algorithms RUN, SVD, and IBU and the quan-
tification algorithms ACC, PACC, ReadMe, HDx, HDy, CC, and PCC within a
common framework. These algorithms di!er in terms of the loss functions, the
regularizers, and the feature transformations they employ.

Our unification demonstrates the similarity between the problems that are
approached in unfolding and in quantification literature. Due to this similar-
ity, we conceive adaptations of quantification algorithms to physics problems as
a valuable endeavor for future work. Likewise, we suggest to adapt unfolding
algorithms to problems outside of physics.
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A Proofs

We now detail the mapping from the original algorithms to our unified notation,
to formally prove that our framework is consistent with the original proposals.

Regularized Unfolding (RUN) The loss function we present in Eq. 5 is a
verbatim statement by Blobel [2, Eqs. (2.29), and (2.26)]. The original al-
gorithm treats the elements of ωp as B-spline coe!cients; however, a more
recent version by the same author [3] employs histograms, which are con-
sistent with our Eq. 2. Due to this change “the second derivative in bin j
is proportional to xj→1 → 2xj + xj+1” [3], where xi = [ωp]i. This derivative
defines the regularization term from Eq. 6. ↭

Unfolding via Singular Value Decomposition (SVD) The loss function
we present in Eq. 7 and the regularization term from Eq. 6 are verbatim
statements by Hoecker and Kartvelishvili [14, Eqs. (29), (37), and (38)]. ↭

Iterative Bayesian Unfolding (IBU) D’Agostini [7, Eqs. (3), and (4)] esti-
mates [ωp (k)

]i as

1

εi

nE∑

j=1

n(Ej) ·
P (Ej | Ci) · P0(Ci)∑nC

l=1 P (Ej | Cl) · P0(Cl)
,

where we identify our notation as F = nE , C = nC , Mij = P (Ej | Ci),
and [ωp (k→1)

]i = P0(Ci). In the original algorithm, n(Ej) ↑ N is the count
observed in the j-th bin, i.e. n(Ej) = N · [ωq]j . Moreover, εi > 0 is an ac-
ceptance factor, which models the probability that an existing instance of
class i is indeed part of the sample—and not hidden due to measurement
complications. Setting εi = N , we obtain [ωq]j =

n(Ej)
ωi

, which is consistent
with our Eq. 8.
For regularization, D’Agostini [7] proposes to “smooth the results of the
unfolding before feeding them in the next step”, for instance “by a polynomial
fit of 3rd degree” or by another low-order polynomial. ↭

Adjusted Classify and Count (ACC) Hopkins and King [15, Eq. (4)] mar-
ginalize over the true labels D ↑ {1, . . . , J} to yield the distribution of class
predictions D̂,

P (D̂ = j) =

J∑

j→=1

P (D̂ = j | D = j↑)P (D = j).

The authors note that “this expression represents a set of J equations [. . . ]
that can be solved for the J elements in P (D)”. Accordingly, we identify our
notation as ωp = P (D), ωq = P (D̂), and M = P (D̂ | D) in their presentation.
To solve this set of equations, the authors propose a “standard constrained
least squares to ensure that elements of P (D) are each in [0,1] and collectively
sum up to 1”. This proposal defines the least squares loss from Eq. 9 and
matches our constraints in Eq. 4. ↭
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Note that Hopkins and King have developed their method independently
of Forman’s binary ACC. However, the basis of their work is precisely the
adjustment by Forman [10, Eq. (1)], as can be seen in Hopkins and King [15,
Eq. (3)]. Therefore, we call their method “multi-class ACC”.
The other multi-class extension of ACC, ωp inv, is presented in McLachlan [16,
Eq. (2.3.4)] and in Vucetic and Obradovic [17, Eq. (3)].

Probabilistic ACC (PACC) The essential proposal by Bella et al. [1] is to re-
place hard classifications argmaxi[h(ωx)]i with probabilistic ones h(ωx) → RC ;
their adjustment is the same as in binary ACC. By applying this proposal
to multi-class ACC [15], we obtain a multi-class PACC which employs the
loss from Eq. 9. ↭

ReadMe Building on their multi-class design of ACC, Hopkins and King [15,
Eq. (6)] set up a matrix equation P (S) = P (S | D)P (D), which maps to our
notation as ωq = P (S) → R2d , M = P (S | D) → R2d→C , and ωp = P (D) → RC .
The authors note that “P (S) is the probability of each of the 2

K possible
word stem profiles” with K = d being the number of word stems. To estimate
this probability, “we merely compute the proportion of documents observed
with each pattern of word profiles”. This computation leads to a histogram

ωq =
1

N

N∑

i=1

εωxi=(X1,...,X2d )
,

which is consistent with our Eqs. 2 and 10. ↭
HDx González-Castro et al. [13, Eq. (9)] minimize the average of feature-wise

Hellinger distances, as we have stated in Eq. 12. They present the distance
with respect to a single feature j, binned into b bins, as

√√√√
b∑

i=1

(√
|Vj,i|
|V | ↑

√
|Uj,i|
|U |

)2

,

where |U | is the total number of instances and |Uj,i| is the number of in-
stances whose feature j is mapped to the i-th bin [13, Eq. (10)]. |V | and
|Vj,i| are the numbers of instances that are to be expected under class preva-
lence values ωp, hence

|Vj,i|
|V | = [Mωp]i+∑j→1

k=1 Bk
,

where
∑j↑1

k=1 Bk is the o!set of the histogram of feature j within our con-
catenation of feature-wise histograms. Using the product Mωp at this point is
consistent with the binary conception that is proposed by González-Castro
et al. [13, Eq. (12)]. ↭

HDy The original HDy [13, Eqs. (13) and (14)] only addresses binary quantifi-
cation. For this case, however, the only change with respect to HDx is that
HDy employs soft classifier outputs h(ωx) instead of features ωx. A straight-
forward extension to the multi-class setting is therefore to bin the class-wise
outputs [h(ωx)]i separately, as HDx does in case of features and as we propose
in our presentation of HDy. ↭
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(Probabilistic) Classify and Count (PCC/CC) Let M = I. Recognize
that the global minimum of the least squares loss,

min
ωp

→ωq ↑Mωp →22 = 0,

is now attained if and only if ωp = ωq. Therefore, under the assumption M = I,
the unique minimizer of the least squares loss is ωq. In this sense, PCC and
CC are proper instances of our framework. ↭


