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Abstract. Adjusted Classify and Count (ACC) is one of the most widely
acknowledged methods for quantification, the supervised learning task of
predicting the class prevalences in a data sample. While ACC stems from
binary quantification, where only two classes are considered, several dif-
ferent multi-class extensions have been proposed. In this work, we com-
pare four existing multi-class extensions, both conceptually and empir-
ically. Moreover, we propose a novel multi-class extension that employs
an un-constrained least squares optimization with the aid of a soft-max
layer. Our empirical results on a recent benchmark data set demonstrate
that numerical optimization techniques for multi-class ACC, like our pro-
posed method, outperform analytic solutions.
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1 Introduction

Quantification [8] is the task of predicting the prevalence of each class in a data
sample. This supervised learning task is in contrast to “standard” classification
learning, where predictions for individual data items, and not for a sample of
items, are desired to be accurate. Applications of quantification arise in text
sentiment analyses [9], in the social sciences [11], in astroparticle physics [4], and
in several other areas.

One of the most widely acknowledged methods for quantification is the Ad-
justed Classify and Count (ACC) technique [8], which was initially proposed for
binary quantification in particular. For the multi-class setting, there are at least
four di!erent extensions to binary ACC: one-versus-all decomposition [8], matrix
inversion [12, 17], pseudo-inversion [14], and constrained least squares [3, 7, 11].
ACC has desireable properties, such as Fisher consistency [16] and computa-
tional e"ciency.

In this work, we discuss the four existing alternatives and we propose a novel
multi-class ACC extension. Our proposal employs un-constrained least squares
with the aid of a soft-max layer. We compare the five multi-class extensions
empirically on a gold-standard benchmark from the LeQua2022 competition [6].
Our reusable implementation is available online.1

1 https://github.com/mirkobunse/QUnfold.jl

https://github.com/mirkobunse/QUnfold.jl
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Sec. 2 introduces binary ACC and Sec. 3 presents the multi-class extensions.
Our experiments are discussed in Sec. 4 before we conclude in Sec. 5.

2 Adjusted Classify and Count in Binary Quantification

In the following, we revisit four fundamental methods for binary quantification,
where predictions ŷi → {↑1,+1} take one of two values. In the binary setting,
the goal is to predict the prevalence of the positive class, P(Y = +1), in a sample
with N data items. We start with the un-adjusted methods before we detail the
adjustment rule that yields consistent quantifiers.

First, the (un-adjusted) Classify and Count (CC) method [8] estimates the
prevalence P(Y = +1) from predictions that are issued for each individual data
item in a sample, i.e.

p(CC) =
1

N

N∑

i=1

1ŷi=+1 . (1)

At this point, the crisp predictions ŷi can be replaced with estimates of
the posterior probabilities [2], which several classification methods return as an
indicator of uncertainty. This proposal leads to the (un-adjusted) Probabilistic
Classify and Count (PCC) estimate

p(PCC) =
1

N

N∑

i=1

P̂
(
Ŷ = +1 | X = ωxi

)
. (2)

CC and PCC are easily extended to multi-class settings, where each compo-
nent [ωp]i of a vector ωp → RC estimates the prevalence of one class i → {1, . . . , C},
as according to Eq. 1 or Eq. 2.

Unfortunately, it is well-acknowledged that CC and PCC are susceptible to
prior probability shift [8, 16], due to imperfections of the underlying classifier.
In particular, Eqs. 1 and 2 will systematically over- or under-estimate the true
class prevalences if these prevalences deviate from the ones that are used during
the training of the classifier. In quantification, these prevalences are typically
not known a priori, so that prior probability shift must be expected. Therefore,
CC and PCC are not appropriate solutions for the quantification problem.

In binary quantification, we can correct this deficiency through an adjustment
rule. This rule leads to the Adjusted Classify and Count (ACC) method [8], one
of the most widely acknowledged techniques for handling prior probability shift
in quantification. Binary ACC estimates P(Y = +1) as

p(ACC) =
p(CC) ↑ FPR

TPR↑ FPR
, (3)

where FPR = P(Ŷ = +1 | Y = ↑1) is the false positive rate of the underlying
classifier and TPR = P(Ŷ = +1 | Y = +1) is the true positive rate. Both of
these rates need to be estimated on hold-out data that is not used during the
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training of the classifier; otherwise, overfitting of p(ACC) is likely. If the number of
falsely positive predicted instances and the number of falsely negative predicted
instances are equal, one can return p(CC) without making an adjustment.

The adjustment rule from Eq. 3 can also be applied to p(PCC) instead of
p(CC). In this case, the adjustment rule yields the Probabilistic Adjusted Classify
and Count (PACC) method [2].

Binary ACC and PACC have desireable properties. Most importantly, they
are Fisher consistent estimators of P(Y = +1) even under prior probability
shift [16]. Moreover, they are computationally e!cient: a prediction requires
only a single pass over the data sample to compute p(CC) or p(PCC); so does the
computation of FPR and TPR during training. Hence, multi-class extensions to
the binary ACC and PACC are promising topics for quantification research.

3 Multi-Class Extensions of Adjusted Classify and Count

In multi-class quantification with C > 2 classes, the goal is to estimate a vector
ωp → P of class prevalences, where the set of feasible solutions

P =

{
ωp → RC : [ωp ]i ↑ 0 ↓ 1 ↔ i ↔ C ↗ 1 =

C∑

i=1

[ωp ]i

}
(4)

is the unit simplex. All solutions within this set are valid probability densities.
In the following, we detail four existing multi-class extensions of ACC. We

further propose one additional extension, an un-constrained least squares esti-
mate which employs a soft-max layer.

Tab. 1 displays a summary of the conceptual properties of these extensions.
In this table, we emphasize that each row respectively extends its preceeding row
only in terms of a single aspect. Therefore, we recognize all of these methods as
being “true” ACC extensions, rather than being independent methods.

Table 1. Adjustments in multi-class ACC extensions.

adjustment basis loss function constraints optimization

one-vs-rest (Eq. 5) TPRi, FPRi — — —
inverse (Eq. 8) M — — —
pseudo-inverse (Eq. 9) M least squares min. norm —
constrained (Eq. 10) M least squares P constrained
soft-max (Eq. 11) M least squares P unconstrained

3.1 One Versus Rest Decomposition

The most straightforward extension of binary ACC decomposes the multi-class
quantification problem into C one-versus-rest tasks [8]. Each of these tasks re-
quires a binary quantification of one class versus all others. Hence, we can use the
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binary adjustment rule from Eq. 3 in each of the tasks separately. The resulting
estimate is ωp (one→vs→rest) → RC , where

[ωp (one→vs→rest)]i =
[ωp (CC)]i ↑ FPRi

TPRi ↑ FPRi
(5)

is the i-th component of ωp (one→vs→rest). Here, [ωp (CC)]i is the CC estimate for the
i-th class. Moreover, TPRi and FPRi are the true positive rate and the false
positive rate when class i is classified against all other classes.

Like in binary ACC, the estimate from Eq. 5 requires clipping to ensure that
each component is between 0 and 1. Moreover, this estimate requires normaliza-
tion to ensure that the sum of all components is one. Unfortunately, these ad-hoc
corrections can lead to estimation errors if the data sets are not su!ciently large
to accurately estimate [ωp (CC)]i, TPRi, and FPRi.

3.2 Matrix Inversion

A multi-class classifier can confuse each pair of classes with a non-zero prob-
ability. The confusion matrix M → RC↑C of a classifier comprises all of these
probabilities in the matrix cells

[M ]ij = P
(
Ŷ = i | Y = j

)
. (6)

The matrix of ground-truth confusion probabilities, which are typically unknown,
defines the CC outcome

ωp (CC) = M · ωp, (7)
from the ground-truth prevalence vector ωp → P. Consequently, we can recover
an estimate of the true ωp with an estimate of the confusion matrix M .

The most straightforward attempt in this direction [12, 17] is to invert an
estimate of M to yield the prevalence estimate

ωp (inverse) = M→1 · ωp (CC). (8)

For instance, this matrix inversion estimate is implemented in the current
release2 of QuaPy [13]. Since QuaPy is likely the most complete and usable
software package for quantification, this choice has established ωp (inverse) as the
“quasi-standard” multi-class extension of ACC and PACC.

However, the inverse of an estimated M is not guaranteed to exist. In this
case, the estimator is undefined. QuaPy deals with this issue by falling back to
the un-adjusted ωp (CC) and ωp (PCC) if M is not invertible.

3.3 Pseudo-Inversion

A robust alternative to matrix inversion replaces the actual inverse M→1 with
the Moore-Penrose pseudo-inverse M†. This replacement leads to the estimate

ωp (pseudo→inverse) = M† · ωp (CC), (9)
2 QuaPy, v0.1.6: https://github.com/HLT-ISTI/QuaPy/releases/tag/0.1.6

https://github.com/HLT-ISTI/QuaPy/releases/tag/0.1.6
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which is always defined because M† is always guaranteed to exist. Moreover,
M† is equal to M→1 if M→1 exists. Hence, the replacement does not reduce the
quality of the estimate. It gains robustness because no fallback to an un-adjusted
ωp (CC) or ωp (PCC) is necessary if M is not invertible.

The pseudo-inverse estimator is proven to be a least-squares estimate of the
true ωp, which is constrained to the minimum norm estimate [14, Th. 4.1]. This
constraint has the advantage that ωp (pseudo→inverse) is unique. However, a mini-
mum norm constraint lacks motivation from a practical perspective; in fact, the
constraint is unrelated to the actual feasible set P from Eq. 4.

3.4 Constrained Least Squares

Both inversion techniques ωp (inverse) and ωp (pseudo→inverse) su!er from not being
constrained to the feasible set P from Eq. 4. In fact, both techniques tend to
produce estimates that i) do not sum to one and ii) have components that
are less than zero. This deficiency is typically addressed through clipping and
normalization, an ad-hoc correction that can lead to estimation errors.

A more appropriate approach is presented by Hopkins and King [11]. They
propose a constrained optimization task

ωp (constrained) = argmin
ωp↑P

∥∥ ωp (CC) →M · ωp
∥∥2
2
, (10)

which explicitly constrains the estimate to the space P of valid probabilities.
Within this space, the most accurate estimate according to the L2 norm is
searched for. Hence, ωp (constrained) employs the same loss function as the esti-
mate ωp (pseudo→inverse), but uses a more appropriate set of constraints.

Unfortunately, Hopkins and King [11] do not propose a specific algorithm
to solve Eq. 10. While an analytical solution exists for the unit sum constraint
1 =

∑C
i=1[ωp ]i [1, Chap. 1.4], we are not aware of an analytic solution that

considers the inequality constraints [ωp ]i ↑ 0 ↓ 1 ↔ i ↔ C from Eq. 4.
Consequently, the optimization of Eq. 10 requires numerical optimization

techniques. In our implementation, we employ a primal-dual interior-point al-
gorithm with a filter line search [18]. However, other numerical methods are
conceivable at this point. For instance, Firat [7] employs a sequential quadratic
programming technique [19, Chap. 18] to solve Eq. 10. We leave a comparison
of numerical optimization techniques in quantification to future work.

3.5 Unconstrained Least Squares with a Soft-Max Layer

We now propose a novel multi-class extension of binary ACC. The goal of our
proposal is to rephrase the optimization task from Eq. 10 to achieve an un-
constrained optimization task which produces valid probability densities despite
being unconstrained. The desire to optimize without constraints is rooted in our
subjective perception that unconstrained optimization is an easier problem than
constrained optimization. Hence, we hope for less noise in the gradients that are
computed during the optimization process.
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We obtain an unconstrained optimization task through a soft-max layer,
which is a derivable operation that transforms latent variables into probability
densities. We maintain the least squares loss function from Eq. 10. Our multi-
class ACC is defined over latent variables ωl → RC , as

ωp (soft→max) = softmax(ωl ↑),

ωl ↑ = argmin
ωl↓RC

∥∥ ωp (CC) ↑M · softmax(ωl)
∥∥2
2
+ ε ·

∥∥ωl
∥∥2
2
,

[softmax(ωl)]i =
exp([ωl]i)∑C
j=1 exp([

ωl]j)
,

(11)

where ε ·↓ωl↓22 is a regularization term that ensures all exp([ωl]i) to be finite within
floating point precision. This regularization term is only a technical detail: it
a!ects the latent variables ωl, but not the estimate ωp (soft→max), which is always
in P due to the soft-max layer. In our experiments, we fix ε = 10→6.

4 Experiments

In the following, we intend to uncover the merits and the disadvantages of the
above multi-class extensions of ACC and PACC. To this end, we evaluate their
performance on the public data set [5] of the LeQua2022 competition [6]. Our
reusable Julia implementation of methods and experiments is available online.1

The LeQua2022 dataset is designed to constitute a gold-standard bench-
mark, both for binary text quantification and for multi-class text quantification.
The multi-class problem in this competition features 28 classes, 20 000 training
items and 1 000 validation samples. Each of the validation samples consists of
1 000 data items that are drawn according to varying class prevalences. We em-
ploy the vectorial representation of the data and a logistic regression classifier,
which obtained the highest performance on this representation during the com-
petition [15]. We optimize the regularization parameter of this classifier on the
validation set and over the grid {10→3, 10→2, 10→1, 100, 101}, to obtain the best
performance for each quantification method. The selection of the best regular-
ization parameter is either in terms of the absolute error (AE) or in terms of the
relative absolute error (RAE). We report the results, in terms of both metrics,
on the test set.

All multi-class extensions of ACC require the estimation of the confusion
matrix M (or at least the rates TPRi and FPRi) on hold-out data. In order
to use all labeled data for classifier training and for the adjustments, we use a
bagging ensemble of size 100. We estimate M , TPRi, and FPRi on the out-of-bag
predictions of this ensemble.

During the hyper-parameter optimization on the validation set, almost all
methods succeeded in producing estimates for the class prevalences. An exception
to this outcome is the matrix inversion from Eq. 8 in ACC. This method failed
to produce prevalence estimates for the values 10→3 and 10→2 of the classifier’s
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regularization parameter because these values led to confusion matrices M that
were not invertible.

Table 2. Test set performance of the di!erent multi-class adjustments, for ACC and
PACC and in terms of AE and RAE. The performance of the best adjustment in each
setting is printed in boldface.

adjustment ACC PACC
AE RAE AE RAE

un-adjusted (Eq. 1 / Eq. 2) 0.0254 2.5532 0.0246 2.6771

one-vs-rest (Eq. 5) 0.0262 4.1484 0.0262 4.1484

inverse (Eq. 8) 0.0222 1.7224 0.0195 1.5288

pseudo-inverse (Eq. 9) 0.0177 1.7224 0.0195 1.5288

constrained (Eq. 10) 0.0158 1.2826 0.0123 0.9908

soft-max (Eq. 11) 0.0130 1.2633 0.0106 1.0886

Discussion The results from Tab. 2 demonstrate that the di!erent multi-class
adjustments exhibit quite di!erent performances, in general. The lowest errors
are achieved by the constrained estimator from Eq. 10 (in terms of RAE in
PACC) and by our unconstrained soft-max estimator from Eq. 11 (in terms of
all other configurations). The margins of improvement over all other adjustments
are considerable: for instance, the constrained PACC achieves an RAE that is
38% smaller than the RAE of the pseudo-inverse PACC (last column, 0.9669 vs
1.5536); our soft-max PACC achieves an AE that is 46% smaller than the AE of
the pseudo-inverse PACC (third column, 0.0106 vs 0.0197).

5 Conclusions and Outlook

We have discussed five di!erent multi-class extensions of the binary adjustment
that is employed in ACC and PACC. One of these extensions is an original
proposal by us; this proposal employs a soft-max layer to circumvent the con-
straints that are otherwise required to obtain valid solutions in a numerical
optimization process. Our proposal and an existing constrained least squares
adjustment [3, 7, 11] deliver the most competitive performances.

Future work should compare di!erent optimization techniques [19] to solve
the constrained optimization task and our unconstrained soft-max proposal. Our
“trick” of using a soft-max layer in quantification is also applicable to other
methods, like ReadMe [11] and HDx / HDy [10], where it should be evaluated.
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