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Abstract. Product catalogs represent the backbone of e-commerce web-
sites. Given these catalogs’ constant evolution, we need to closely monitor
the quality of their product information. Identifying defective product
information, however, often requires human auditing, which makes cat-
alog monitoring expensive. In this article, we investigate approaches for
tracking weighted rates over time, here defined as the fraction of cus-
tomer attention that goes to items with a particular defect. We focus
on these metrics, given that to improve customer trust we need to min-
imize their exposure to listings with defective information. We assume
that the gold standard for detecting defects comes from human auditors,
but to avoid collecting audits at each point in time, we leverage existing
machine learning classifiers. However, simply replacing human auditor
decisions with automated predictions generally leads to large biases in
the estimated weighted rates. We instead leverage classifiers while obtain-
ing approximately unbiased and low variance estimators of the weighted
rate of interest. We rely on being able to evaluate the quality of the
classifier using audits at a baseline time, and then extrapolate its perfor-
mance to the target times. We perform extensive simulation studies to
stress-test our proposed estimation approaches under a variety of scenar-
ios representative of our use cases. Our proposed estimation approach is
related to the task of quantification in machine learning, and so we draw
connections throughout the document.

Keywords: Quantification · Prior probability shift · Label shift.

1 Introduction

Product catalogs are the backbone of e-commerce websites, as they provide the
information that is presented to customers. Maintaining customer trust requires
identifying defects in product information, which usually needs human inspec-
tion for detection. For instance, product information on Amazon.com is consol-
idated from contributions by individual sellers [1]. These consolidated product
attributes frequently contain defects, such as inconsistencies or erroneous values
due to honest mistakes by sellers, system errors, and bad actors who intention-
ally introduce corrupted information. This causes detrimental performance of a
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variety of customer-facing applications; for instance, displaying such imperfect
information to customers erodes their trust.

Given the scale of e-commerce product catalogs, it is nearly impossible to
manually inspect all of their information. An important task in ensuring high
catalog quality involves monitoring quality metrics. This monitoring is often done
through careful human inspection of random samples of product entries collected
periodically. Even with carefully designed samples, when business goals require
tight control of these metrics at high frequency, monitoring through human au-
diting becomes extremely expensive. This creates the need for automated proce-
dures that allow to monitor quality metrics while maintaining strong guarantees
on their accuracy.

In this article, we investigate a methodology for estimating weighted rates
in a semi-automated way. The reason for using weighted rates in our use cases
is that not all products are equally important for customers. Given a signal
of customer engagement with each product, we are interested in monitoring the
fraction of such signal among products with a defect. For instance, we might want
to track the fraction of customer visits to product pages that contain erroneous
information; from a customer-centric point of view, this is a more important
metric to monitor and aim to reduce than the simple fraction of catalog products
with erroneous information.

For our use cases there typically exist machine learning classifiers in produc-
tion for detecting defects. These classifiers tend to be complex and are trained
on audited data collected over time. Given that retraining such classifiers for the
sake of metric measurement is burdensome and not cost-efficient, we propose to
use them in their existing form to predict defects. However, it is well known that
simply replacing human auditor decisions with classifier predictions generally
leads to large biases in the estimated metrics [9, 12, 6, 7]. To leverage existing
classifiers while obtaining approximately unbiased and low variance estimators,
we rely on being able to evaluate the quality of the classifier using audits at a
baseline time. We then assume that the performance of the classifier in terms
of its true and false positive rates can be extrapolated to the target time. Our
methodology constitutes an extension of techniques proposed for the machine
learning task of quantification, reviewed next.

1.1 Quantification

Forman [7] introduced the quantification task to address the following problem:
how can we use labeled training data from a baseline population to estimate the
proportion of a class in a target population where we only have unlabeled data.
This task is related to the fundamental problem of estimating a proportion using
an imperfect diagnostic tool, studied earlier in epidemiology [9, 12], in the con-
text of mechanical sorting devices [11], among others [10]. A seemingly obvious
solution to the quantification task is to train a classifier on the labeled data, use
it to predict the class for the unlabeled data, and then simply summarize the
proportion of class predictions. This approach, known as classify and count [6,
7], is known to perform poorly, as it is generally guaranteed to be biased, except
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for a few restrictive conditions [8, 10]. Forman [6, 7] recognized this, and pro-
posed alternative approaches for estimation, including an adjusted classify and
count (ACC) approach that is guaranteed to work well under certain conditions;
we will refer back to this method later in this article. Interestingly, the ACC
approach had also been derived earlier by other authors [9, 12, 11], which shows
the ubiquity of the quantification problem.

Forman [7, 8] also introduced cost-quantification, as the task of estimating
total costs for each class using class predictions by imperfect classifiers. This
task seems to have received less attention in the literature; for instance, a 2017
review [10] only included the proposed solutions by Forman [7] in 2006, and
to the best of our knowledge no further advances have been proposed for cost-
quantification since then, despite many advances for the simpler quantification
task [13–15]. The automated estimation of weighted rates, as in this paper, is
closely related to cost-quantification, given that if we can estimate the total of
a class, we can also estimate the fraction it represents with respect to the total
cost across classes. The methods that we propose in this article therefore also
contribute to cost-quantification solutions. Our contribution consists in showing
that an analog of the ACC approach is valid for estimating weighted rates under
two assumptions that allow to extrapolate and simplify the true and false pos-
itive rates of the classifier. We also investigate approaches for dealing with the
classifiers’ thresholds that lead to weighted rate estimators with low variance,
and compare approaches for constructing confidence intervals.

2 Methodology

We shall think of a product catalog at a time t as a collection of features on
Nt products. A product i has a known non-negative measure of importance for
customers, or weight, at time t denoted Wit. Let Yit denote the defect indicator
for product i at time t, 1 if defective, 0 otherwise. This indicator Yit is unknown
and determining its true value requires human auditing.

Estimation target: Formally, our goal is to estimate the weighted rate Rt

at a time t:

Rt =
NtX

i=1

WitYit

. NtX

i=1

Wit. (1)

We assume that we do not have audited data from the catalog at time t,
and so we rely on the existence of a classifier to predict the status Yit of a
product i. Let h(·) denote a generic classifier that takes in a feature vector Xit

of product i at time t, and outputs a predicted status Ŷit for product i, that
is, Ŷit = h(Xit) 2 {0, 1}. The classifier h(·), for instance, can be obtained from
thresholding a score at a cutpoint c, say h(Xit) = I[g(Xit) > c], where I(·) is the
indicator function and g(·) may represent a score obtained from a model or from
some complicated procedure. For now we assume that h(·) is fixed, but later we
compare approaches to handle classification thresholds.

We also rely on having an audited sample at a baseline time, which we use to
estimate the true and false positive rates of the classifier at that baseline time. In
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practice, we implement measurement cycles that start with collection of audits
to evaluate the performance of the classifier, and then use that information to
produce automated estimates for the remainder of the cycle; see Appendix A at
https://bit.ly/3wJK5Mj for a more detailed description.

2.1 The Proposed Weighted Rate Estimator

To derive the proposed estimator of the weighted rate, we first do a slight rewrit-
ing of the estimation target. To this end, let (W,Y, Ŷ ) be a random vector that
takes with probability 1/Nt each of the catalog values at time t, {(Wit, Yit, Ŷit)}Nt

i=1.
With this formulation, our estimation target can be equivalently written as

Rt =

XNt

i=1 WitYitXNt

i=1 Wit

=
(1/Nt)

XNt

i=1 WitYit

(1/Nt)
XNt

i=1 Wit

=
Et(WY )

Et(W )
,

where Et(·) denotes the expected value using the values of the catalog at time t.
The quantity that we would obtain from simply using the predictions Ŷit

instead of the true values Yit is here denoted as Rraw
t , and it is given by

Rraw
t =

XNt

i=1 WitŶitXNt

i=1 Wit

=
Et(WŶ )

Et(W )
,

which generally will diffier from the target Rt. Our strategy to derive the pro-
posed weighted rate estimator requires connecting Rt and Rraw

t through the
classification performance of h(·). First, note that we assume the weights Wit to
be known, and therefore Et(W ) to be known, allowing us to focus on connecting
Et(WY ) with Et(WŶ ). Note that, by the law of total expectation, we can write

Et(WY ) = Et[W Pt(Y = 1 | W )], (2)

Et(WŶ ) = Et[W Pt(Ŷ = 1 | W )].

Also, by the law of total probability,

Pt(Ŷ = 1 | W ) =p1|1,t(W ) Pt(Y = 1 | W ) + p1|0,t(W ) [12 Pt(Y = 1 | W )],
(3)

where p1|a,t(W ) = Pt(Ŷ = 1 | Y = a,W ) denotes the true positive rate (TPR)
for a = 1, and the false positive rate (FPR) for a = 0, as a function of the
weights at time t. From equation (3), we can establish the relationship

Pt(Y = 1 | W ) =
Pt(Ŷ = 1 | W )2 p1|0,t(W )

p1|1,t(W )2 p1|0,t(W )
, (4)

which resembles the basis for the ACC estimator of simple proportions [6], al-
though here it appears conditional on a value W of the weights. Replacing equa-
tion (4) into (2) above, we obtain the identity

Et(WY ) = Et

.
W

Pt(Ŷ = 1 | W )2 p1|0,t(W )

p1|1,t(W )2 p1|0,t(W )

P
. (5)
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Creating an estimator based on this expression is not straightforward. Firstly,
estimating the TPR and FPR functions, p1|1,t(W ) and p1|0,t(W ), for the catalog
at time t would require collecting audited data at time t, which defeats the
purpose of automating the estimation approach. The validity of our proposed
estimator therefore relies on being able to extrapolate the performance of the
classifier from a baseline time to the target time t.

Extrapolation assumption (EA): The TPR and FPR at the time of in-
terest t are the same as at the baseline time.

Additionally, although not strictly required, we also work under an extra
assumption to favor a simple estimator.

Simplifying assumption (SA): The TPR and FPR are constant as a func-
tion of the weights.

We discuss the plausibility of these assumptions in detail in Section 2.2. The
EA can be written as P0(Ŷ = 1 | Y = a,W ) = Pt(Ŷ = 1 | Y = a,W ), for
a = 0, 1. Under the EA, we can ignore the time subindex and simply write
p1|a(W ) = P (Ŷ = 1 | Y = a,W ), for a = 0, 1. Then, the SA can be written
as p1|a(W ) = p1|a(W

0) for any two values of the weights W and W 0, where
a = 0, 1. Under the SA we can simplify the notation and write p1|1 = p1|1(W )
and p1|0 = p1|0(W ).

Given the EA and SA, expression (5) simplifies as

Et(WY ) = Et

X
W

Pt(Ŷ = 1 | W )2 p1|0
p1|1 2 p1|0

.
=

Et(WŶ )2 p1|0Et(W )

p1|1 2 p1|0
,

and we obtain

Rt =
Et(WY )

Et(W )
=

Et(WŶ )/Et(W )2 p1|0
p1|1 2 p1|0

=
Rraw

t 2 p1|0
p1|1 2 p1|0

. (6)

Interestingly, this has the same form as the ACC estimator for simple proportions
[9, 12, 6, 7], except that here Rt and Rraw

t are weighted rates.
Given expression (6), we propose to estimate the weighted rate as

R̂t =
R̂raw

t 2 p̂1|0
p̂1|1 2 p̂1|0

, (7)

where R̂raw
t is estimated from a very large random sample from the catalog at

time t, or preferably R̂raw
t is taken exactly as Rraw

t , if computational resources
allow. The estimated TPR and FPR, p̂1|1 and p̂1|0, are obtained from the au-
dited data from baseline. The appropriate estimators for each of these quantities
depend on the sampling scheme [16], but as long as they are consistent, the con-
sistency of R̂t is guaranteed by the continuous mapping theorem [19] because
the true value Rt = (Rraw

t 2 p1|0)/(p1|1 2 p1|0) is a continuous function of Rraw
t ,

p1|1, and p1|0. This argument serves as the proof of the following result.

Theorem 1 (statistical consistency). Under EA and SA, assume that R̂raw
t ,

p̂1|1, and p̂1|0 are statistically consistent estimators for Rraw
t , the TPR, and the
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FPR, respectively. Then, the proposed estimator R̂t is statistically consistent for
the target rate Rt.

Statistical consistency of our estimator is an important property, as it guar-
antees that as the sample sizes increase, the estimator converges in probability
to the true value that we want to estimate [19]. In particular, it implies that
our estimator is approximately unbiased for large sample sizes. Working with
statistically consistent estimators R̂raw

t , p̂1|1, and p̂1|0 is relatively standard; for
instance, with simple random samples S0 of size n0 at baseline, and St of size
nt 2 n0 at time t, the following estimators are consistent:

R̂raw
t =

X

i0St

WitŶit

. X

i0St

Wit; p̂1|a =
X

i0S0

Ŷi0I(Yi0 = a)
. X

i0S0

I(Yi0 = a), a = 0, 1.

More intricate estimators will be needed under more complex sampling schemes,
but those details go beyond the scope of this paper. The proposed estimator R̂t

heavily relies on the assumptions EA and SA, which we discuss next.

2.2 Discussion of Assumptions

To examine the plausibility of the assumptions EA and SA, let us expand the
TPR and FPR in terms of the classifier h(·) and the product’s features X,

Pt(Ŷ = 1 | Y = a,W ) =

P
Pt(Ŷ = 1 | x, Y = a,W )ft(x | Y = a,W )dx,

where Pt(Ŷ = 1 | x, Y = a,W ) = I[h(x) = 1] since the automated procedure
h(·) only uses the features X as input, and ft(x | Y = a,W ) represents the
distribution of the features X at time t among products with Y = a and weight
W . We can see that Pt(Ŷ = 1 | Y = a,W ) might depend on the time t and the
product weight W only if the distribution of the features X changes from time 0
to t and for diffierent values of the product’s weight W among the two groups of
products with and without the characteristic of interest. This leads to suffcient
conditions for the assumptions above.

Sufficient condition for extrapolation assumption: The distributions
of the features X among products with and without the characteristic of interest,
and for the diffierent values of importance, are the same at time 0 and at time t,
that is, ft(x | Y = a,W ) = f0(x | Y = a,W ).

This is a conditional version of what is sometimes referred to as the prior
probability shift assumption [5, 18]. To examine this suffcient condition, let us
say that Y = 1 indicates that a product contains a defect in a specific attribute.
In such case, this condition says that the distribution of the features used to
predict defects, among products that are defective Y = 1 and that have a specific
importance W , is the same at baseline and at time t. In other words, we expect
to see the same indications of defects at baseline and at time t among defective
products that have the same importance. A similar interpretation would apply
among non-defective products.
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Sufficient condition for simplifying assumption: The distributions of
the features X among products with and without the characteristic of interest
Y are the same regardless of the importance of the products, that is, f(x | Y =
a,W ) = f(x | Y = a).

Continuing with the example of defects, this condition says that the distribu-
tion of the features used to predict defects among defective products is the same
regardless of how popular the product is. Namely, we expect to see the same in-
dicators of defects among defective products, regardless of how important they
are. A similar interpretation would apply among non-defective products.

The EA is a fundamental assumption that allows us to borrow information
from the audited sample at baseline to obtain an estimate for follow-up times.
We need this assumption to extrapolate the performance of the classifier h(·).
On the other hand, the SA is not strictly necessary, as in principle we can use
the audited data at baseline to build models of the probabilities Pt(Ŷ = 1 | Y =
a,W ) and obtain a more flexible estimator; we discuss this further in Section 4.
Nevertheless, the SA allows us to obtain an initial simple estimator on which we
can build and improve upon.

2.3 Dealing with Classifier Thresholds

The proposed estimator (7) of the weighted rate was derived assuming that
the classifier h(·) is fixed, however, the classifier might be obtained as h(x) =
I[g(x) > c], that is, it depends on thresholding a score g(x). We study two ap-
proaches for handling the cutpoint c, although we assume that the score function
g(x) is fixed, as in our use cases where it is already trained at the baseline time.

Variance Minimization Given a threshold c, we can use the classifier h(x) =
I[g(x) > c] to obtain an estimate R̂t = (R̂raw

t 2 p̂1|0)/(p̂1|1 2 p̂1|0), where each
of R̂raw

t , p̂1|1 and p̂1|0 are implicitly functions of the threshold c. Given the
classifier h(x), we can obtain an analytical approximation of the variance of R̂t,
as shown in Appendix B at https://bit.ly/3wJK5Mj. We denote the estimated
variance given threshold c as Vc. The variance minimization approach simply
takes a grid of u threshold values, c1, . . . , cu, computes the estimated variance
given each threshold, V1, . . . , Vu, and selects the threshold c0 that minimizes
the estimated variance. The final weighted rate estimator is computed from the
classifier h(x) = I[g(x) > c0].

Variance minimization has been implemented for quantification before, for
instance [17] used it within a mixture model approach to quantification.

Median Sweep Forman [7] studied diffierent strategies for choosing classifica-
tion thresholds to obtain reliable estimation of the prevalence of a class, and
found that the approach known as median sweep was the best in terms of lead-
ing to the lowest bias. These results were replicated recently [15], and therefore
we implement median sweep along with our proposed weighted rate estimator.
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Median sweep consists in computing the estimates R̂t,1, . . . , R̂t,u according to
the threshold values in a grid c1, . . . , cu, and returning the median estimate. This
approach is theoretically justified, given that each of the estimators R̂t,1, . . . , R̂t,u

corresponding to a fixed grid c1, . . . , cu is guaranteed to be statistically consis-
tent, as shown in Theorem 1, and thereby asymptotically unbiased, as long as
R̂raw

t , p̂1|0 and p̂1|1 are estimated in a statistically consistent way. Under such
reasonable conditions, the median of these individual estimators inherits the
statistical consistency and asymptotic unbiasedness.

We also explore the performance of a trimmed median sweep approach by
Forman [7], who proposed to use median sweep after discarding estimates from
thresholds that lead to |p̂1|1 2 p̂1|0| < 0.25, in order to provide more stability to
the ACC estimator.

2.4 Confidence Intervals

We also propose approaches to build confidence intervals, using analytical meth-
ods and the bootstrap [4].

Analytic Confidence Interval Given an estimator R̂t = (R̂raw
t 2 p̂1|0)/(p̂1|12

p̂1|0) obtained from a specific classifier h(·), for instance obtained from a specific
threshold, we can use the analytical variance formula derived in Appendix B
(at https://bit.ly/3wJK5Mj) to obtain an estimate of the variance Xvar(R̂t),
and form a confidence interval based on the asymptotic normality of R̂t. A
100(12↵)% confidence interval, with ↵ � (0, 1), is given by R̂t±z10↵/2

�
Xvar(R̂t),

where z10↵/2 is the 1 2 ↵/2 quantile of a standard normal distribution, say
z0.975 = 1.96 for a 95% confidence interval. Despite the simplicity of this interval,
its actual coverage might be lower than 95%, given that the analytic variance
formula Xvar(R̂t) is obtained from an asymptotic analysis that might be less
accurate for small samples. Furthermore, if the threshold to obtain R̂t comes
from a threshold selection procedure subject to randomness from the sampling,
such as the variance minimization approach presented above, then the estimated
variance Xvar(R̂t) might underestimate the true variance of R̂t, and the analytical
confidence interval might not actually have the promised coverage.

Using an analytical confidence interval along with the estimators obtained
from the median sweep approach is more challenging, given that deriving the
analytical variance of the median of correlated estimators is complex. Instead,
we turn our attention to the bootstrap [4] as a flexible way of obtaining estimates
of variances and confidence intervals.

Bootstrap Confidence Intervals The basis of the bootstrap [4] is to take
samples with replacement from the original sample, of the same size as the orig-
inal sample, and for each of these new samples repeat the estimation procedure.
For instance, if we denote R̂†(b)

t the estimate obtained via variance minimization
or median sweep from a bootstrap sample b, then we can use the bootstrap
estimates obtained from B independent bootstrap samples, R̂†(1)

t , . . . , R̂†(B)
t ,



Semi-Automated Estimation of Weighted Rates 35

to compute confidence intervals in two ways. First, we can simply find the
↵/2 and 1 2 ↵/2 quantiles of the bootstrap estimates, and take those as the
bounds of the 100(1 2 ↵)% confidence interval; we refer to this as the boot-
strap quantile approach. A second approach is to compute the variance of the
bootstrap estimates, Xvarboot(R̂†

t ), and use it to construct confidence intervals as
R̂†

t ± z10↵/2

�
Xvarboot(R̂†

t ), where R̂†
t is the estimate obtained via variance min-

imization or median sweep from the original sample; we refer to this as the
bootstrap standard error approach. Given that in the estimator R̂t = (R̂raw

t 2
p̂1|0)/(p̂1|12 p̂1|0), we assume that the variability from R̂raw

t is negligible in com-
parison to the variability from p̂1|1 and p̂1|0, we only apply the bootstrap to the
audited sample collected at baseline.

In the next section we compare the actual coverage of the five confidence
intervals detailed here: for variance minimization we compute the analytical
approach in addition to the two bootstrap approaches, whereas for median sweep
we compare the two bootstrap confidence intervals.

3 Performance Comparison

3.1 Existing Estimators

Weighted rates of the form Rt =
.Nt

i=1 WitYit/
.Nt

i=1 Wit can be estimated using
techniques for cost-quantification, as mentioned in Section 1.1: since in our use
cases the weights Wit are known, we only need to estimate the total

.Nt

i=1 WitYit.
To the best of our knowledge, the existing approaches for cost-quantification are
due to Forman [7, 8, 10]. Here we consider two of those.

First, the classify and total (CT) approach simply replaces Yit with Ŷit, and
so this estimator leads to our R̂raw

t ; we consider this estimator to show the
reader how biased this approach can be. Second, the grossed-up total approach
takes the CT estimator and multiplies it by the ratio r̂acct /r̂cct , where r̂cct =.Nt

i=1 Ŷit/Nt is the classify and count estimator for the simple rate rt, and r̂acct =
(r̂cct 2 p̂1|0)/(p̂1|1 2 p̂1|0) is its adjusted version. The resulting estimator for the
weighted rate is R̂gut

t = R̂raw
t r̂acct /r̂cct . This approach is derived from a rule of

three, that is, assuming that these ratios are equal:
.Nt

i=1 WitYit/
.Nt

i=1 WitŶit =.Nt

i=1 Yit/
.Nt

i=1 Ŷit.
The remaining approaches proposed by Forman [7, 8] for cost-quantification

rely on the following idea. The total weight in the positive class can be writ-
ten as

.Nt

i=1 WitYit = µ+
t Ntrt, where rt =

.Nt

i=1 Yit/Nt is the simple rate and
µ+
t =

.Nt

i=1 WitYit/
.Nt

i=1 Yit is the mean weight among the positive class. If
we know or have a good estimate of µ+

t , then we can simply use quantification
techniques to estimate rt, and then estimate the total cost as µ+

t Ntr̂t. In the
applications studied by Forman [7, 8], it was reasonable to assume that µ+

t did
not change over time, and so it could be estimated from the audited data at
baseline. However, programs to improve data quality of e-commerce catalogs of-
ten target products with the largest weights, which directly impacts the value of
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µ+
t over time. Because of this, we do not consider these approaches, as assuming

that µ+
t is constant is unreasonable in our use cases.

3.2 Simulation Design

To compare the performance of the proposed and existing estimation approaches,
we opt for conducting extensive simulation studies where we generate synthetic
catalogs under a variety of scenarios that reflect characteristics of our use cases.
We opt for this approach, given that we want to obtain an estimation strategy
that can be reliably deployed across diffierent circumstances, and a simulation
study allows us to control the characteristics of the scenarios that we want
to explore. Furthermore, given that we are restricted from publishing results
obtained on datasets from our organization, creating synthetic scenarios that
reflect characteristics of our use cases seems like a good compromise. We generate
synthetic catalogs of size Nt = 106, and each simulation run involves one catalog
for a baseline time t = 0 and one for a follow-up time t > 0. The exact details of
their construction are given in Appendix C at https://bit.ly/3wJK5Mj, but
here we present a brief description.

For baseline, a catalog is generated with a proportion of defective items, r0 =
0.1, 0.2, 0.3. We then generate product weights using distributions obtained from
actual numbers of visits to product pages in the Amazon.com website during a
fixed time period and for a specific category of products. This is done such
that the weighted rate R0 is a specific fraction d of the proportion of defective
products r0. Given that for many of our use cases we expect defects to be more
prevalent among products with lower weights, we expect R0 < r0. In particular,
we take R0 = d r0 for d = 1/4, 1/2, 3/4. We generate synthetic product features
to predict defects so that we obtain diffierent levels of classification diffculty, here
characterized by the true and false positive rates of the classifier; we consider
three scenarios by fixing TPR=0.5, 0.7, 0.9 and FPR=0.05, which reflect a range
of use cases, from cases where classifiers are in their infancy and do no yet reach
high accuracy, to cases where mature classifiers have been developed and reach
relatively high accuracy.

To generate the catalog at time t > 0, we fix diffierent values of the percent
change ↵ = 100(Rt2R0)/R0 of the weighted rate from time 0 to t > 0; we take
↵ = 250%,225%,+25%,+50% to cover a range of relatively large changes.
The diffierent combinations of ↵ and R0 considered here lead to a wide range
of scenarios for the weighted rate Rt going from 1.25% to 33.75%, which is
representative of the rates that we observe in our use cases.

Given a pair of synthetic catalogs for baseline and for time t > 0, we repeat
1000 times the estimation process of the weighted rate Rt with each of the
competing estimation approaches. For all approaches, we start with sampling
with replacement n0 products from the baseline catalog, and record their ground
truth values Yi0 (analog to auditing), along with their weights Wi0 and model
scores g(Xi0). We explore three sampling scenarios with n0 = 500, 1000, 2000.
In this simulation study we do not consider sampling from the catalog at time t,
as we use the exact Rraw

t in computing the estimator (7), given that Rraw
t only
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depends on the classifier predictions Ŷit = I[g(Xit) > c], which do not involve
auditing resources. If this is not tenable in practice, we need to estimate Rraw

t

using a large sample such that its induced variability is negligible in comparison
with the baseline sample.

3.3 Results

Estimators’ Bias and Variance For each of the catalog scenarios described
above, we summarize the performance of the diffierent estimation approaches in
terms of their bias and standard deviation. In Figures 1a and 1b we present the
bias results for sample size n0 = 1000 and for baseline weighted rates such that
R0 = r0/2; the results for other n0 and relationships between R0 and r0 are
similar to the results presented here, in terms of leading to the same conclusions
on which estimation approach is best. We also omit results for TPR=70%, as
the performance is in between that of TPR=50% and TPR=90%. The vertical
axis in the panels of Figures 1a and 1b show the estimation bias as a percentage
of the true value Rt.

In Figure 1a we present the results for the classify and total, and the grossed-
up total approaches [7, 8], which in some scenarios lead to relative bias of up to
350% and 90% respectively. The bias obtained from these approaches is too large
to consider them reliable, and so we do not further study them.

In Figure 1b, we present the bias results for our proposed approaches, that
is, estimator (7) along with median sweep (MS) or variance minimization (VM)
to handle the classification threshold. The performance of the trimmed MS ap-
proach is virtually the same as the basic MS, so we omit it. To illustrate the
results, consider the top left panel in Figure 1b, which shows a relative bias for
the VM approach of almost 20% when the initial (baseline) weighted rate is 5%
and the change is -50%, that is, when the weighted rate that we want to estimate
at time t is 2.5%. In such case, a 20% relative bias means that the VM approach
is on average returning 3% instead of 2.5%. While this is a small bias overall,
the MS approach has relative biases of less than around 6% across all scenarios
considered here. Undoubtedly, MS leads to a more reliable estimation approach
in terms of bias, although the performance of the VM approach comes in close.

We can also see from comparing the rows of panels in Figure 1b that working
with a high quality classifier (TPR=90%) generally leads to lower biases, espe-
cially when the weighted rates are small. Figure 1b also indicates that it is easier
to unbiasedly estimate larger weighted rates. Another striking conclusion from
looking at the first row of Figure 1b is that even with a very low quality classifier
(TPR=50%) we can still obtain estimation approaches with relatively small bias,
an encouraging sign of the reliability of the proposed estimation approaches for
diffierent use cases.

A reliable estimator should also have a small variance. In Figure 2 we present
the standard deviation of the proposed estimation approaches under the same
conditions presented for Figure 1b. We find that in most scenarios both VM and
MS lead to nearly the same standard deviation, but VM can sometimes lead
to higher estimation variance. This result seems counter-intuitive, given that
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(b) Proposed methods.

Fig. 1: Relative bias of classifier-based weighted rate estimation approaches. Note
the diffierent scales of the vertical axes.

by design VM should lead to the lowest variance. However, VM here uses an
analytic approximation to the actual variance of the estimator based on large
samples, which leads to an approach that does not actually reduce the estimation
variance for small samples. Additionally, a factor that might contribute to the
good performance of MS is that, in a sense it corresponds to an ensemble of
classifiers, one per threshold in our grid, which are working together to estimate
Rt; ensemble methods are known to both reduce bias and variance of learning
algorithms [3].

Confidence Intervals’ Coverage and Length We now present the perfor-
mance of the five methods to build confidence intervals described in Section 2.4.
If a procedure to construct confidence intervals truly leads to a confidence level
of 100(12 ↵)%, that means that if we were to repeat the measurement process
(starting from random sampling) many times, then 100(12 ↵)% of those times
the observed confidence interval would contain the true value of the parameter.
Unfortunately, some confidence interval procedures might be misleading if their
actual coverage is diffierent from their nominal one. To ensure that a confidence
interval procedure is reliable, it is customary to conduct a simulation study where
we repeat the measurement process many times under a fixed set of conditions,
and compute the actual coverage or confidence of the confidence intervals by
computing the proportion of times that the intervals contain the true value of
the parameter of interest. A confidence interval procedure is reliable if the actual
coverage is around the nominal one.

In Figure 3 we present the actual coverage of the five confidence interval pro-
cedures described in Section 2.4. Undoubtedly, the bootstrap quantile confidence
interval obtained from the median sweep procedure is the most reliable of these
five approaches, given that its actual coverage is nearly the nominal 95%. In
fact, the performance of the four bootstrap-based confidence intervals is gener-
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Fig. 2: Standard deviation of proposed weighted rate estimation approaches.

ally reasonable. The worst performance overall is obtained from the confidence
interval based on the analytic approximate variance of the estimator obtained
from the variance minimization approach. This might occur due to the analytic
variance formula not accounting for the variability that comes from the threshold
selection, which in turn leads to lower actual coverage of the analytic confidence
interval.

Finally, an important property of a good confidence interval procedure is that
it does not lead to unnecessarily wide confidence intervals. In this simulation
study we also computed the average length of the confidence intervals obtained
under each approach, and found that the average lengths are very similar for all
approaches across all scenarios. In the interest of space, we do not present plots
with these results.

Given these results, our final recommendation is to use median sweep to deal
with the thresholds in the classifiers, and to use bootstrap quantile confidence
intervals to quantify the uncertainty in the estimation.

4 Discussion and Extensions

Our proposed estimation approach, using median sweep to deal with the thresh-
olds of the classifiers and bootstrap confidence intervals to quantify estimation
uncertainty, is currently being implemented in our organization to produce esti-
mates of weighted rates for several types of catalog defects. Our implementation



40 M. Sadinle et al.

Time 0 Wgtd. Rate 5% Time 0 Wgtd. Rate 10% Time 0 Wgtd. Rate 15%
TPR

 50%
TPR

 90%

−50%−25%+25%+50% −50%−25%+25%+50% −50%−25%+25%+50%

90.0

92.5

95.0

97.5

90.0

92.5

95.0

97.5

Change in Weighted Rate from Time 0

C
on

fid
en

ce
 In

te
rv

al
 C

ov
er

ag
e

Coverage of 95% Confidence Intervals

Fig. 3: Actual coverage of nominal 95% confidence intervals (CIs). CIs based
on variance minimization: grey dotted lines: analytic confidence interval; grey
dashed lines: bootstrap standard error; grey solid lines: boostrap quantiles. CIs
based on median sweep: black dashed lines: bootstrap standard error; black solid
lines: boostrap quantiles.

consists of measurement cycles, which are marked by baseline times, when we
collect audited data, and followed up by automated estimation.

Intuitively, for follow-up times close to the baseline time of the cycles, the
proposed estimation approach should be reliable, given that the extrapolation
assumption (EA) should approximately hold. As we move farther away from the
baseline, the EA might become more questionable. In our use cases, we plan
to start from short measurement cycles, say monthly periods, and based on the
audited data test the hypothesis of whether the TPR and FPR are the same
at the beginning of the cycles. If we repeatedly fail to reject the hypothesis, we
expand the measurement cycles, as this indicates that the EA holds for longer
in that particular use case.

Regarding the simplifying assumption (SA) used to derive our proposed es-
timator, it says that the TPR and FPR do not depend on the product weights.
This seems initially reasonable, given that the classifiers that we work with use
product features exclusively, and not measures of engagement of customers with
the products. Nevertheless, the SA can be examined using audited data, for in-
stance by regressing the predicted indicators of defects on the weights, separately
for audited products with and without the defect. For use cases when there is
evidence of an association, a simple solution is to stratify the estimation domain
based on weight intervals, proceed with the estimation as described here sepa-
rately within each stratum, and aggregate the per-stratum estimates to obtain an
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overall estimate of the weighted rate, where the aggregation is done weighting the
strata by their relative share of the products’ weights. This stratified approach
requires the SA to hold within stratum, which is more tenable. Intuitively, in the
extreme case where there is one stratum per weight value the assumption holds
exactly. However, while estimation based on a very fine stratification will allevi-
ate the bias induced by violating SA, it will lead to a large estimation variance.
Selecting the right stratification then involves a bias-variance tradeoffi which will
change depending on the use case.
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