9/29/22

The old EM algorithm for quantification
learning: Some past and recent results

Marco Saerens (UCLouvain, Belgium), ) S&BB
Christine Decaestecker (ULB, Belgium) e 2022

Il UCLouvain m

Table of contents

m Introduction: initial case study

m Intuitive derivation of the EM algorithm for prior probability
shift

m Interesting lessons from some recent advances

TIE 1L




Introduction: Initial case study
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m The work was published in the early 2000s

— Saerens M. Decaestecker C. & Latinne P. (2001). “Adjusting the outputs of a
classifier to new a priori probabilities: a simple procedure”. Neural computation, 14
(1), pp. 21-41.

Motivation

m We were confronted to the following challenging
problem

— To classify pixels of images
— Based on remote sensing information
— =To provide a Land cover interpretation
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Motivations

m Real data coming from
— LANDSAT Thematic Mapper 7 bands
— 36km x 36km
— 1201 x 1201 « pixels » to classify
— 11 class labels

— 50 features from spectral/textural filters
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Motivations

m Some of the 11 classes

— Arable, cultivated, land

— Road network

— Industrial, commercial unit
— Forest

— Urban fabric
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Motivations

m The problem is

— Strongly unbalanced

— Class priors (prevalence) vary from one map to
another!

m |t means that a classification model

— Trained on one map
— Is not suited when applied on another map
— Because class priors differ (prior shift)
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Motivations

m Three main ideas emerged from this challenging
problem

— Use unlabeled data from the test set in order to
improve the classification model

— Try to adapt an already existing classification model to
new conditions

— Estimate the a priori probabilities in new conditions
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Motivations

m Both idea were largely exploited during this period
(end nineties and beginning of the 2000s)

— Semi-supervised classification

— Transfer learning (prior shift, label shift, etc)
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Motivations
Reference, test, image Bagging classification model
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Definition of the problem

m How can we adapt a classification model to new a
priori probability conditions?

— When the new a priori probabilities are known

— When these new a priori probabilities are unknown

13

NI EDEE e mwd WE D EDE N e e

The Expectation-
Maximization algorithm

14
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Definition of the problem

m This EM technique (Latinne et al., 2001; Saerens
et al., 2001) is also called the

— Maximum likelihood method or
— The iterative label or prior shift correction
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Definition of the problem

m Assume we have some calibrated classification
model providing

— exact a posteriori probabilities of membership to a set
of g classes {w;}i_;

— based on some observed feature vector x for the
random vector x, simply denoted as

P(wi|x) = P(y = w;|x = x)

— This is a kind of “perfect model matching” assumption
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Dealing with changing a priori
probabilities: priors known
m This classifier provides a posteriori probabilities

Pi(y = wilx)
— In the conditions of the training set (subscript ¢)

— Assume that we know the priors of both training and test
(“real life”) sets

Pi(wi) = Pi(y = w;), and P(w;) = P(y = w;)

— which do not match (training prior # “real life” prior):

{ Pi(y = wi) # Py = wi)
P (x|y = wi) = P(X|y = wi) 17
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Dealing with changing a priori
probabilities: priors known

m We are seeking the a posteriori probabilities in
the conditions of the real-life dataset (no subscript

)
P(y = w;|x)

m We have from Bayes’ rule
_ Pi(y = wilx) Pe(x)

Pt(x|y:wi) - Pt(?j:wz)
P(xly = wi) = P(ypz(ywi)if))(X) 18
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Dealing with changing a priori
probabilities: priors known

m Thus

Ply =wilx) P(x) _ Pi(y = wil¥) Pi(x)

Ply=w;) Py =w)

m From which we isolate the posteriors in real-life
(test) conditions, P(y = w;|x)

19
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Dealing with changing a priori
probabilities: priors known

<) — P4 (x)
= We easily obtain ;( ) P(x)
e ) = [(PeBPi(y = wilx) Py = wi)
P(y = wilx) x e

- < Pi(y = wi|x) P(y = w;)
= f(x) oy = 1)
= [(x) Pe(y = wi[x) odds(y = w;)

P(y = w;)
Pt(y = Wi)

(= weighting factor common in sampling theory

odds(y = w;) =

) 20
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Dealing with changing a priori
probabilities: priors known

m But since

q
D Ply=wilx)=1
=1

® we have

f(x) = [Z Po(y = wilx) odds(y = w;)

=1

21
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Dealing with changing a priori
probabilities: priors known

= We thus obtain the “new” a posteriori
probabilities for the real-life, test, data

Py = i)t
P(y = wilx) = q tp(;.)

> Piy = wjlx) By ()

Jj=1

22
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Dealing with changing a priori
probabilities: priors unknown

= Now, intuitively, if the priors are not known in
advance (sattelite image classification), iterate on
all samples of the test set:

1. Estimate the new a priori probabilities based on the
adjusted results of the classifier on the real-world
data set

Pw;) = =31 Plyr = wilxx)

2. Re-estimate the a posteriori probabilities based on
the current estimates of the a priori probabilities

P(w;)

Py (ws)

q

P(w;)
Pi(yr = wjlxi 1
TR

Pi(ye = wilxy)

Pyr = wilxx) =
23

~
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Dealing with changing a priori
probabilities: priors unknown

m This was reformulated as an instance of the EM
algorithm
— maximizing the log-likelihood of the real data sample

m The method is an easy-to-implement post-
processing technique

24
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Some recent advances
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More recent results

m We investigated recent papers published
— In major conference proceedings
— In major journals
— The list is certainly not comprehensive though

m |t appears that both

— The “Adjusted classify and count” method (Forman,
2005, 2006)

— The “EM” algorithm

m are still studied and in use, often as baselines

26
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More recent results

m This is probably due to two factors
— The arise of the fields of “iransfer learning”
— as well as “learning to quantify”

m Note that the idea behind quantification
— Already appeared in the biomedical field
(epidemiology, etc) long ago
— As well as in pattern recogniton (see, e.g., McLachlan,
1992)

27

T e Il Il

N

Lessons from recent results: first lesson

m |n practice, there exists probably more stable
algorithms than the EM

— Indeed, du Plessis et al. (2014) and Alexandari et al.
(2020) showed that

— the corresponding optimization problem is concave

m However, the EM can get stuck in a degenerate
fix point (du Plessis et al., 2014) !

— Indeed, a posteriori probability vector putting all
observations in the same class is a fix point of the EM2}

9/29/22

14



Lessons from recent results: first lesson

m [n addition, the EM sometimes exaggerates the
adjustments (Caelen, 2018)

justment s=0

RO \ TR
:

| degradation

Early stopping rule??
29
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Lessons from recent results: first lesson

m The priors can be computed by maximizing a
concave function (the likelihood of the test set)

— Indeed following (du Plessis et al., 2014; Alexandari,
2020); see also (Tasche, 2017),

— Assuming an iid sample,

m The likelihood of the test set is:

ﬁ P(zck = Xk)
k=1

— Let’s calculate this quantity
30
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P(yk = Wi, L = Xk)

=
s
8

|

£

|
=

=
Il
—
E
Il
—
-
Il
—

= 11 ZP(xk\yk = wi)P(yr = wi)
- H Z Pi(xk|yx = wi)P(yrx = wi)

g IO e e Y

_ ﬁ Pt Z Pt Y = wz|xk)P(yk _ wi)

Pi(yr = wi)

= IIr Y P = ebp,
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Lessons from recent results: first lesson

| Taking the log of the likelihood provides

m Finally, we have to maximize the following
concave objective function with respect to the
priors

Pi(yr = wilxk)
)

subject to P(w;) > 0 and Y 7, P(w;) =1 32
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Lessons from recent results: first lesson

m So, why not directly maximize this concave
function?
— This is what was recently exploited by Alexandari et al.

(2020), as well as Sipka et al. (2022) based on the
confusion matrix

— The objective function is very close to the log-likelihood
of finite mixture models, also containing the priors®

(1) Note: just after the presentation, we noticed the following. From (McLachlan, 2000, section 2.8), the application of tiyz
EM to maximize this objective function seems to provide the same equations as the EM algorithm of Saerens et al. (2001).
This is still to be verified, though.
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Lessons from recent results: first lesson

m This rises some remarks/questions like

— Does the maximization of the concave objective function
provide the same solution as the EM?

— Can we find an efficient procedure for computing the
maximum of this objective function?

34
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Lessons from recent results: first lesson

m Moreover, du Plessis et al. (2014) further showed
that

— The EM algorithm is equivalent to Kullback-Leibler
divergence between train likelihood and test likelihood

— It also proposes a technique for approximating new
priors in the more general case of f-divergences

35
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Lessons from recent results: first lesson

m |t was also shown by Tasche (2017) that both
— the “Adjusted classify and count” technique and
— the “EM” technique

m are Fisher consistent

— This is a desirable property of an estimator, in the
same spirit as unbiasedness or asymptotic consistency

36
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Lessons from recent results: first lesson

m Note that the same author (Tasche, 2022)
recently extended the EM method to

— prior probability + covariate shifts
— by making some factorization assumptions

m The EM algorithm (and also the adjusted classify
and count) has recently been extended in order to
deal with ordinal data (Bunse, 2022)

37
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Lessons from recent results: second

lesson
m Calibration of the classification model is essential

— Let us consider a binary classification problem with
target variable y =0, 1

— Denote by g(x) the probabilistic output (soft prediction)
of the classification model for feature vector x

m Then, intuitively, the classification model is
perfectly calibrated on a domain D of the feature
space when

j = g(x) =E[ylx =x] forall x € D

— That is, the output of the model matches true posteriors
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Lessons from recent results: second

lesson

m But since this is difficult to verify in practice for all
x, we often simply require (e.g., De Groot, 1983)

§ = Ely|g(x)] for all g(x) € [0,1]

m The importance of calibration has been
highlighted in several recent works,
— Recently by (Alexandari et al., 2020; Garg et al., 2020;
Esuli et al., 2021)
m Calibration looks important

— Not only for quantification, but also for interpretability
(Scafarto, 2022) 39
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Lessons from recent results: second

lesson

m But when is a classification model well-
calibrated?

m It depends on multiple factors! Among which:
— The model has the “perfect model matching” property
— The training set is unbiased

— The minimum of the cost function is reached (model
well-fitted)

— The cost function for training the model minimizes to
the conditional expectation

40
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Lessons from recent results: second
lesson

m Calibration is often performed by using a post-
processing step (Guo, 2017; Alexandari et al.,
2020; Garg et al., 2020)

— Involving a validation set

— Many deep learning models have a competitive
classification accuracy but are often ill-calibrated (Guo,
2017)!

m But other avenues could be explored

— For instance, considering the cost function "
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Lessons from recent results: second

lesson

m ML researchers (e.g., Hampshire, 1990) studied
the conditions under which the minimum of the
cost function is the conditional expectation

— This is closely related to the study of proper scoring
rules in applied statistics (see, e.g., De Groot, 1983;
Gneiting, 2007)

m Under some mild assumptions, for binary
classification, the condition (Hampshire, 1990) is

G-1) _ £
y £'[y; 0]
— where £ is the loss associated to each observation 4
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Lessons from recent results: second
lesson

m This condition is also sufficient

m These results generalize to ¢ classes

43

M EE e el DD DR e

Lessons from recent results: second

lesson
m For the least square error criterion

LGyl = 5T —y)?
L'yl =Y —v)
m The derivatives are

{iW@H=%§—D
L'y 0l =y

— and the condition is fulfilled "
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Lessons from recent results: second
lesson

m For the log-likelihood (“cross-entropy”) criterion
£ly;yl =yn(y) + (1 —y)In(1 - )

m Exercice: Does the log-likelihood criterion lead to
the estimation of a posteriori probabilities?

m Questions:

— In deep learning, which cost functions (Katarzyna et al.,
2016) minimize to a posteriori probabilities?

— What are the empirical consequences of this? 45
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Lessons from recent results: second
lesson

m In addition, it has also been shown under some
assumptions that (Lindley, 1982; Saerens et al.,
2002)

— If the classification model has been trained with an
arbitrary cost function and this cost function is
minimized

— There exists a transformation mapping the model’s
predictions to a posteriori probabilities

m This transformation is f(9) = W

1—- =7
_ _ £'(5;0) 46
— This can also be generalized to ¢g classes
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Lessons from recent results: second
lesson

m Here is an example with six different loss
functions

£[g;y] = exply] (y — 7 — 1) + exp[7] (23)
£g;y) = (7 - y)* (24)
£[i;y] = 1 — exp[—(7 — y)?] (25)
£[7;y] = log[1 + (7 — v)°] (26)
£[y;y] =log[l + Iy — v|] 27)
£]y:y] = exp[|ly — y|I°] + exp[—|ly — y[I’] —2. (28)

47
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Lessons from recent results: second
lesson

= Here are the corresponding remappings (taken from Saerens et al.,
2002)

Graph of £[7; 0] for cost (23) Graph of £(§7; 0] for cost (24) Cost function (23) Cost function (24)
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Lessons from recent results: second
lesson

m Finally, it is of course always useful to represent
graphically the predicted values in terms of the
observed values

m And use reliability diagrams (see, e.g.,
Vaicenavicius, 2019)

49
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Thank you for your attention
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